organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Suchada Chantrapromma,^a† Anwar Usman,^a Hoong-Kun Fun,^a* Bo-Long Poh^b and Chatchanok Karalai^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

† Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 203 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.054 wR factor = 0.131 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title salt, $C_6H_{13}N_2^+ \cdot C_6H_3N_2O_5^-$, the cation acts as a donor for the bifurcated intermolecular $N - H \cdot \cdot \cdot O$ hydrogen bonding interactions with the O atoms of the phenolate and one of the nitro groups of the 2,4-dinitrophenolate. The crystal packing structure is built from molecular ribbons of 2,4-dinitrophenolates parallel to the *c* axis, with the cation linking

them by four intermolecular $C-H \cdots O$ hydrogen bonds.

1,4-Diazabicyclo[2.2.2]octanium 2,4-dinitrophenolate

Received 19 December 2001 Accepted 20 December 2001 Online 11 January 2002

Comment

In the crystal structures of the adducts of 2,4-dinitrophenol (DNP) with relatively strong amine bases, such as diamines [N,N-dimethylenediamine (Chantrapromma et al., 2002) and piperazine (Usman et al., 2001)] or a tertiary amine [hexamethylenetetramine (Usman et al., 2001)], DNP transfers an H atom to the amines forming a DNP⁻ anion and acts as a multiple acceptor of $N-H \cdots O$ hydrogen bonds involving the nitro and phenolate groups. In a continuation of our systematic studies on the hydrogen-bonding motifs in the adducts of DNP with diamine bases, we have prepared and structurally characterized a 1:1 adduct of 1,4-diazabicyclo[2.2.2]octane N(CH₂CH₂)₃N, (DABCO), with DNP. DABCO is also a relatively strong basic diamine which readily forms the $[N(CH_2CH_2)_3NH]^+$ cation with phenols, e.g. 1,1,1tris(4-hydroxyphenyl)ethane (Ferguson et al., 1997); it also forms the [HN(CH₂CH₂)₃NH]²⁺ dication with stronger acids, such as 3,5-dinitrobenzoic acid (Burchell et al., 2001) and phenylphosphonic acid (Ferguson et al., 1998), where the unprotonated N is active in an O-H···N interaction and N-H bonds are involved in $N-H \cdots O$ hydrogen bonds.

The asymmetric unit (Fig. 1) comprises of one molecule each of DNP and DABCO, in which DNP transfers an H atom from the hydroxy group to the DABCO making them an ionic pair, *viz*. the 2,4-dinitrophenolate (DNP⁻) anion and 1,4-diazabicyclo[2.2.2]octanium $[N(CH_2CH_2)_3NH]^+$ (DABCOH⁺) cation.

The H atom transferred to atom N1 was located from a difference map and was freely refined. The DABCOH⁺ cation N1-C1, N1-C3, and N1-C5 bond distances [1.502 (2),

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of the title adduct showing 50% probability displacement ellipsoids and the atom-numbering scheme.

1.496 (2) and 1.492 (2) Å] are elongated compared with the unprotonated N2-C2, N2-C4 and N2-C6 [1.456 (3), 1.455 (3) and 1.465 (3) \dot{A}]. A similar feature in the DABCOH⁺ cation was observed by Ferguson et al. (1997). The bond lengths and angles in DNP⁻ are comparable with the corresponding values in its adduct with hexamethylenetetramine or piperazine, irrespective of the fact that both nitro groups of the DNP⁻ in the title adduct are less twisted around their N-C bonds.

In the title adduct, the N-C-C-N-C-C six-membered rings of the DABCOH⁺ cation adopt almost a boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.816 (2) Å, θ = 90.4 (1) and φ = 7.8 (2)° for N1/C1/C2/N2/ C4/C3, Q = 0.799 (2) Å, $\theta = 88.4$ (1) and $\varphi = 7.2$ (2)° for N1/C1/ C2/N2/C6/C5, and Q = 0.813 (2) Å, $\theta = 91.4$ (1) and $\varphi = 8.0$ (2)° for N1/C3/C4/N2/C6/C5.

Within the asymmetric unit (Fig. 1), the DABCOH⁺ and DNP⁻ ions are linked by intermolecular N1-H11N···O1 and N1-H11N···O2 hydrogen bonds, with the DABCOH⁺ cation acting as a hydrogen donor in this bifurcated system. DNP⁻ acts as a multiple acceptor of hydrogen bonds and the DNP⁻ anions are packed into molecular ribbons along the c axis, with DABCOH⁺ linking DNP⁻ anions into layers by C5- $H5B \cdots O3^{iii}$. DABCOH⁺ also interconnects DNP⁻ anions in adjacent layers by C2-H2A···O1ⁱⁱ, C1-H1A···O4ⁱ and $C3-H3A\cdots O5^{i}$ hydrogen bonds into a three-dimensional molecular network. Fig. 2 shows the packing diagram of the title adduct viewed down the b axis, and indicates the intermolecular hydrogen bonds.

Experimental

The title adduct, (I), was prepared by mixing thoroughly equimolar amounts of 1,4-diazabicyclo[2.2.2]octane (0.56 g, 5 mmol) and 2,4dinitrophenol. The mixture was dissolved in 40 ml of ethanol with addition of 3 ml of distilled water, and was warmed up to the temperature range of 328-333 K until a clear solution was obtained. The solution was then filtered and the filtrate was left to evaporate slowly in air. Yellow single crystals, suitable for X-ray diffraction studies, were obtained from the solution after a few days.

Figure 2

Packing diagram of the title adduct viewed down the b axis, showing the hydrogen-bond network.

Crystal data

$C_6H_{13}N_2^+ \cdot C_6H_3N_2O_5^-$	$D_x = 1.472 \text{ Mg m}^{-3}$
$M_r = 296.29$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 4593
a = 23.6934 (4) Å	reflections
b = 6.4529(2) Å	$\theta = 3.3-28.3^{\circ}$
c = 19.1830(5) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 114.247 \ (1)^{\circ}$	T = 203 (2) K
$V = 2674.2 (1) \text{ Å}^3$	Block, yellow
Z = 8	$0.38 \times 0.32 \times 0.18 \ \mathrm{mm}$

Data collection

Siemens SMART CCD area-	3218 independent reflections
detector diffractometer	1908 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.074$
Absorption correction: empirical	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -31 \rightarrow 22$
$T_{\min} = 0.957, T_{\max} = 0.979$	$k = -8 \rightarrow 8$
7527 measured reflections	$l = -23 \rightarrow 25$

Refinement

$w = 1/[\sigma^2(F_o^2)]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0057 (7)

Table 1

Selected geometric parameters (Å, °).

C2-C1	1.528 (3)	C6-C5	1.538 (3)
C4-C3	1.534 (3)		
O3-N3-C8-C9	8.9 (2)	O5-N4-C10-C11	-1.2 (2)

Table 2

Hydrogen-bonding geometry (A, \circ) .						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N1-H11N····O1	1.00 (3)	1.70 (3)	2.676 (2)	166 (2)		
$N1-H11N\cdots O2$	1.00 (3)	2.60 (2)	3.187 (2)	118 (2)		
$C1-H1A\cdots O4^{i}$	1.03 (3)	2.45 (3)	3.442 (3)	160 (2)		
$C2-H2A\cdots O1^{ii}$	1.06 (3)	2.55 (3)	3.490 (3)	147 (2)		
$C3-H3A\cdots O5^{i}$	1.00(3)	2.47 (3)	3.461 (3)	172 (2)		
$C5-H5B\cdots O3^{iii}$	1.02(2)	2.47(3)	3,366 (3)	146 (2)		

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 + y, z; (iii) $\frac{3}{2} - x$, $\frac{1}{2} - y$, 1 - z.

Several of the H atoms, especially those involved in hydrogen bonds, were located from difference maps and were isotropically refined. The other H atoms were geometrically fixed, with ideal bond lengths and angles, to their attached parent C atoms and were treated as riding atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/PFIZIK/610961, and AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

- Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). *Acta Cryst.* B**57**, 201–212.
- Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). Acta Cryst. E58, 0108–0109
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Ferguson, G., Bell, W., Coupar, P. I. & Glidewell, C. (1997). Acta Cryst. B53, 534–543.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Usman, A., Chantrapromma, S. & Fun, H.-K. (2001). Acta Cryst. C57, 1443–1446.
- Usman, A., Chantrapromma, S., Fun, H.-K., Poh, B.-L. & Karalai, C. (2002). *Acta Cryst.* C58. In the press.